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1.     Objectives 

The key idea of this project is that parameterized theories and various operations on them 
provide a uniform conceptual foundation for software engineering. The broad objectives 
of this project are (1) to show how well-understood concepts of mathematical logic apply 
to software engineering, (2) to identify and automate the basic operations on theories that 
underlie and support formal approaches to software system development and evolution, and 
(3) to demonstrate a higher and more broadly applicable level of software automation than 
has previously been achieved. 

The following paragraphs describe our results over the past few years. Our efforts can be 
loosely classified in terms of theory, experimental testbed, and applications. We use KIDS 
(Kestrel Interactive Development System) as our testbed and showcase for our experiments 
in automated software engineering. Our theoretical work both motivates new extensions to 
KIDS and draws on our experience with KIDS as inspiration for new topics. The interaction 
of these two efforts has been extremely fruitful over the past few years. The current project 
is based on our observation that much of what goes on in KIDS is uniformly describable 
in terms of theories, operations on theories, and theory morphisms. The theoretical work 
performed under this contract has motivated the development and beginning implementation 
of the Specware system, which is our succesor to KIDS. Over the past few years we have 
focused on scheduling as an application domain. 

1.1.    Experimental Testbed - KIDS 

KIDS [42, 33] is a program transformation system - one applies a sequence of consistency- 
preserving transformations to an initial specification and achieves a correct and efficient 
program. From the user's point of view the system allows the user to make high-level design 
decisions like, "design a divide-and-conquer algorithm for that specification" or "simplify 



that expression in context". We hope that decisions at this level will be both intuitive to 
the user and be high-level enough that useful programs can be derived within a reasonable 
number of steps. 

The user typically goes through the following steps in using KIDS for program development. 

1. Develop a domain theory- The user builds up a domain theory by defining appropriate 
types and functions. The user also provides laws that allow high-level reasoning about 
the defined functions. Our experience has been that distributive and monotonicity 
laws provide most of the laws that are needed to support design and optimization. 
Recently we have added a theory development component to KIDS that supports the 
automated derivation of distributive laws. 

2. Create a specification - The user enters a specification stated in terms of the underlying 
domain theory. 

3. Apply a design tactic - The user selects an algorithm design tactic from a menu and 
applies it to a specification. Currently KIDS has tactics for simple problem reduc- 
tion (reducing a specification to a library routine) [30], divide-and-conquer [30], global 
search (binary search, backtrack, branch-and-bound) [32], and local search (hillclimb- 
ing) [20, 21]. 

4. Apply optimizations - The KIDS system allows the application of optimization tech- 
niques such as simplification, partial evaluation, finite differencing, and other trans- 
formations. The user selects an optimization method from a menu and applies it by 
pointing at a program expression. Each of the optimization methods are fully auto- 
matic and, with the exception of simplification (which is arbitrarily hard), take only a 
few seconds. 

5. Apply data type refinements - The user can select implementations for the high-level 
data types in the program. Data type refinement rules carry out the details of con- 
structing the implementation. 

6. Compile - The resulting code is compiled to executable form. In a sense, KIDS can be 
regarded as a front-end to a conventonal compiler. 

Actually, the user is free to apply any subset of the KIDS operations in any order - the 
above sequence is typical of our experiments in algorithm design. 

1.2.    Theory 

Much of my work in the past few years has focused on automating the design of algorithms. 
I developed formal models, called algorithm theories, for various well-known classes of al- 
gorithms and developed formal/mechanizable design tactics for each class. Example classes 
were fisted above. 



More recent work has focused on theories and operations on theories as the formal under- 
pinings of algorithm design as well as data structure design/refinement and general software 
development. Algorithm design is based on constructing a theory morphism1 from an algo- 
rithm theory into a given application domain theory. Datatype design and and refinement 
are also based on constructing a theory morphism from one datatype theory into another. 
Generally, specifications are theories and the implementation of specifications is based on 
constructing a theory morphism into a (relatively) concrete, computationally-oriented theory. 
This formal view of software development has motivated research into the kinds of theories 
that are useful for specifying and reasoning about application domains and systems, as well 
as capturing knowledge about algorithms, data structures, and other kinds of programming 
knowledge. It has also led us to focus our attention on formal/automatable techniques for 
constructing theory morphisms. 

1.3.    Applications — Transportation Scheduling 

We have used KIDS to derive extremely fast and accurate transportation schedulers from 
formal specifications. As test data we use strategic transportation plans which are generated 
by U.S. government planners. A typical problem, with 10,000 movement requirements, 
takes the derived scheduler 1-3 minutes to solve, compared with 2.5 hours for a deployed 
feasibility estimator (JFAST) and 36 hours for deployed schedulers (FLOGEN, ADANS). 
The computed schedules use relatively few resources and satisfy all specified constraints. The 
speed of this scheduler is due to the synthesis of strong constraint checking and constraint 
propagation code. 

2.     Significant Accomplishments 

We briefly describe the main accomplishments of this project. Each topic is elaborated in 
subsequent sections. 

1. TPFDD Scheduling - The U.S. Transportation Command and the component service 
commands use a relational database scheme called a TPFDD (Time-Phased Force and 
Deployment Data) for specifying the transportation requirements of an operation, such 
as Desert Storm or the Somalia relief effort. We developed a domain theory of TPFDD 
scheduling defining the concepts of this problem and developed laws for reasoning about 
them. KIDS (Kestrel Interactive Development System) was used to derive and optimize 
a variety of global search scheduling algorithms that perform constraint propagation 
[36]. The resulting code, generically called KTS (Kestrel Transportation Scheduler), 

XA theory morphism from theory A to theory B is a translation of the language of A to the language of 
B such that theorems of A translate to theorems of B. 



has been run on a variety of TPFDDs generated by planners at USTRANSCOM and 
other sites. 

We compared the performance of KTS with several other TPFDD scheduling systems, 
such as JFAST, FLOGEN, DITOPS, and PFE. We do not have access to JFAST 
and FLOGEN, but these are (or were) operational tools at AMC (Airlift Mobility 
Command, Scott AFB). According to [10] and David Brown (retired military planner 
consulting with the Planning Initiative), on a typical TPFDD of about 10,000 move- 
ment records, JFAST takes several hours and FLOGEN about 36 hours. KTS on a 
TPFDD of this size will produce a detailed schedule in one to three minutes. So KTS 
seems to be a factor of about 25 times faster than JFAST and over 250 times faster 
than FLOGEN. The currently operational ADANS system reportedly runs at about 
the same speed as FLOGEN. KTS is orders of magnitude faster than any other TPFDD 
scheduler known to us. 

2. Theater Scheduling 

In 1994 we began to develop a scheduler to support PACAF (Pacific Air Force) at 
Hickham AFB, Honolulu which is tasked with in-theater scheduling of a fleet of 26 
C-130 cargo aircraft in the Pacific region. We developed (and are continuing to evolve) 
a theory of theater transportation scheduling. Several variants of a theater scheduler 
(called ITAS for In-Theater Airlift Scheduler) have been developed to date, and more 
are planned. The interface to ITAS and integration with a commercial database pack- 
age have been developed by BBN. ITAS runs on an Apple Powerbook laptop computer. 
The laptop platform makes it attractive both for field and command center operations. 
ITAS can currently produce ATOs (Air Tasking Orders) based on the schedules that 
it generates. 

The ITAS schedulers have emphasized flexibility and rich constraint modeling. Versions 
of ITAS were installed at PACAF in August 1994, September 1994, and February 1995. 
The most recent version simultaneously schedules the following classes of resources: (1) 
aircraft, (2) aircrews and their duty day cycles, (3) ground crews for unloading, and 
(4) ramp space at ports. 

3. Synthesis of constraint propagation code 

A key technical achievement of this project was discovering and implementing tech- 
nology for generating efficient constraint propagation code. The speed of the KTS 
schedulers derives from the extremely fast checking and propagation of constraint in- 
formation at every node of the runtime search tree. Whereas some knowledge-based 
approaches to scheduling will search a tree at the rate of several nodes per second, our 
synthesized schedulers search several hundred thousand nodes per second. 

Briefly, the idea is to derive necessary conditions on feasibility of a candidate sched- 
ule. These conditions are called cutting constraints. The derived cutting constraints 
for a particular scheduling problem are analyzed to produce code that iteratively fixes 
violated constraints until the cutting constraints are satisfied. This iterative process 
subsumes the well-known processes of constraint propagation in the AI literature and 
the notion of cutting planes from the Operations Research literature [40, 46]. Con- 
straint propagation is discussed in more detail in Section 4.2.3.. 



4. Classification approach to design 

We developed a new approach to the problem of how to construct refinements of spec- 
ifications formally and incrementally. The idea is to use a taxonomy of abstract design 
concepts, each represented by a design theory. An abstract design concept is applied by 
constructing a specification morphism from its design theory to a requirement specifica- 
tion. Procedures for computing colimits and for constructing specification morphisms 
provide computational support for this approach. Although the classification approach 
applies to the incremental application of any kind of knowledge formally represented 
in a hierarchy of theories, our work mainly focused on a hierarchy of algorithm design 
theories and its applications to logistical applications [38, 37]. This technique enable us 
to integrate at a deep semantic level problem-solving methods from Computer Science 
(e.g. divide-and-conquer, global search), Artificial Intelligence (e.g. heuristic search, 
constraint propagation, neural nets), and Operations Research (e.g. Simplex, integer 
programming, network algorithms). Classification is discussed in more detail in Section 
5.. 

5. Derivation of Parallel Algorithms - Although our algorithm design tactics have been 
used to produce algorithms with good parallel properties [31, 33], parallel algorithms 
has not been an explicit focus of our research. However for the purposes of the Work- 
shop on Parallel Algorithm Derivation and Program Transformation held in New York 
City in 1991, I explored the application of the algorithm design tactics to some classic 
parallel sorting algorithms [39]. I choose Batcher's parallel mergesort algorithm which 
is quite difficult to explain and has some desirable features - it was the basis of one 
of the first sorting networks. The reason that the algorithm is so difficult to explain 
is that it is based on a shuffle constructor for sequences rather than the more famil- 
iar cons or concat: shuffle([l,3,5],[2,4:,6]) = [1,2,3,4,5,6], cons(l, [2,3]) = [1,2,3], 
concat([l, 2,3], [4,5,6]) = [1,2,3,4,5,6]. Since the constructors of a type have a heavy 
influence on the formulation of the operations and relations on a type, one would expect 
that a shuffle-based sequence theory would be quite different than cons-based theories. 
Indeed the hardest part of this derivation was to build up the shuffle-based theory of 
sequences - questions such as 'under what conditions is the shuffle of two sequences 
sorted?' lead to whole new concepts and the laws for reasoning about them. Once this 
theory is built up the derivation of a 0(log ra)-time merge operation is straightforward 
and yields a 0(log2 ra)-time mergesort. Also derivable in this new shuffle-based theory 
is the well-known odd-even transposition sort and a variety of other shuffle-related 
algorithms. 

6. Problem Reduction Theories 

Problem reduction is a pervasive technique for solving problems by reducing a problem 
instance to a structure of subproblem instances. Solutions to the subproblem instances 
are composed to form a solution to the initial instance. Divide-and-conquer is prob- 
lem reduction used to find a single solution to a given problem. Problem reduction 
generators are used to enumerate all solutions. We produced an algorithm theory and 
design tactic for the class of problem reduction generators [34]. This algorithm the- 
ory, called complete problem reduction theory, provides the logical basis for dynamic 
programming, branch-and-bound, game-tree search, and other well-known algorithm 
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paradigms. The design tactic is related to the divide-and-conquer tactic and results 
in the characteristic recurrence equation of problem reduction theory. If we decide to 
compute the characteristic recurrence equations from the bottom up, then we get the 
usual dynamic programming algorithms. Top-down control leads to branch-and-bound 
algorithms such as AO* and game-tree algorithms such as alpha-beta and SSS*. 

This year we implemented in KIDS a new collection of tools based on theories, signature 
morphisms, theory morphisms, and theory translation. The tactics for divide-and- 
conquer and problem reduction generators were implemented using these tools and 
the result has been far more general and flexible tactics than previously. Partly this 
generality is due to the theories being indexed by a signature, as in algebraic theories. 
In previously published algorithm theories and design tactics we have had to fix the 
signature thereby limiting the applicability of the theory unnecessarily. 

7. Data Structure Design 

A subtype is often denned by a characteristic predicate over elements of a supertype. 
All operations on the subtype preserve this predicate as an invariant. Most interesting 
data structures are subtypes in this sense. For example, heaps are a subtype of binary 
trees that are characterized by the property that the children of a node are larger than 
the parent. From a design perspective, this suggests two key problems. First, how do 
the characteristic predicates arise during the development process. Must they simply be 
invented or are there formal techniques for deriving appropriate predicates? Second, 
given such a characteristic predicate, how can we formally develop a self-contained 
theory for the subtype - one without reference to operations of the parent type? 

In this past year we have begun developing answers to these two questions. The first, 
how to derive the characteristic predicate of a subtype, has been explored via a detailed 
derivation of the classic heapsort algorithm. Heapsort is a specialized selection sort al- 
gorithm involving the use of the heap data structure and was the first known 0(n log n) 
worst-case and average-case algorithm for sorting. Applying divide-and-conquer to the 
sorting problem (and choosing a simple compose) we derive a specification for the 
problem of selecting and extractingthe least element of a bag. This gives us an ex- 
tended bag theory - the usual operations of equality, membership, construction, etc. 
augmented with min and extractmin. When we attempt to construct a theory mor- 
phism from this extended bag theory into binary tree theory, then unskolemization and 
various heuristically-guided choices result in the derivation of the heap property. The 
key choice is that the min operation (in bag theory) be translated as the root operation 
(in binary tree theory). This results in the heap property. There is a great deal more 
to explore in the theory of designing data structures, but it appears that the concepts 
and techniques that we have developed for designing algorithms provides many of the 
basic techniques. 

The other question of how to develop a self-contained subtype theory has been ad- 
ddressed in the following way. We developed a procedure that derives constructors for 
a subtype given constructors for the parent type and a characteristic predicate of the 
subtype. The procedure is sound in that if it terminates it produces a set of construc- 
tors that inductively generate the subset of elements of the parent type that satisfy the 
characteristic predicate. However the procedure need not terminate. In such cases the 
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procedure seems to generate constructors for each value of the subtype - it does not 
find a recursive pattern that covers the type. For the other operators of the subtype 
theory we must design them so that they leave the subtype predicate invariant - often 
this is an algorithm design problem. 

8. Software Evolution 

My colleague Y.V. Srinivas and I have begun to explore a formal approach to evolu- 
tion of formal descriptions that is based on inference and dependency analysis. We 
view evolution as the transition from one consistent description to another. Each such 
transition can be decomposed into three phases: (1) start with a consistent descrip- 
tion, (2) change some aspect of the description (possibly introducing inconsistency), 
(3) minimally change other parts of the description to re-establish consistency (change 
propagation). In general, change propagation is the maintenance of certain properties 
(such as consistency, well-formedness, etc.) while changing others. 

To make the problem of change propagation tractable, we restrict our attention to 
changes which are monotonic, i.e., generalizations or specializations (other changes 
can be represented as combinations of these). Using an explicit representation of a 
consistency property as a formula, we use a special form of inference, directed inference, 
to determine which parts of the description to change in order to re-establish the 
desired consistency property. The inference makes use of dependency information 
which indicates the direction and amount of change, variance, of each entity in the 
domain with respect to changes in other entities. 

9. KIDS and Challenge Problems - In 1991 we applied KIDS to derive a somewhat larger 
problem than before [35]. We obtained a structured English specification of the Track 
Assignment portion of an Air Traffic Control system that was developed by Hughes 
Aircraft. This was about 6 pages of text. A domain theory was developed in KIDS 
(about 24 pages of formal text) in which most of the laws and rules were automatically 
derived using the theory development mode in KIDS. Then various design, optimiza- 
tion, and refinement operations were applied to generate code from a specification of a 
track assignment module. This code was similar in structure to hand generated ADA 
produced by Hughes personnel. The main difference was that our code was expressed 
in a functional subset of the Regroup language (our local extension of the Refine lan- 
gauge). 

3.     Specifying a Scheduler 

3.1.    What is Scheduling? 

The essential notion of scheduling is that certain activities are assigned to resources over 
certain time intervals. Various constraints on the assignments must be satisfied and certain 
measures of the cost or "goodness" of the assignment are to be optimized. 



A domain theory for scheduling defines the basic concepts of scheduling and the laws for 
reasoning about the concepts. After a review of the relevant literature (e.g. [11]) we have 
identified the following general components of a scheduling domain theory. 

1. Activities - A model of the activities can include their internal structure and charac- 
teristics, hierarchies of activity abstractions, and various operations on activities. 

2. Resources - A model of the resources can include their internal structure and charac- 
teristics, hierarchies of resource abstractions, and various operations on resources. 

3. Time - A time model can include a calculus of time-points or time-intervals [1, 19]. 

4. Constraints - A constraint model includes the language for stating constraints and a 
calculus for reasoning about them. Several classes of constraints commonly arise in 
practice. The most common are precedence constraints (which state that one activity 
must precede another) and capacity constraints (which state bounds on the capacities 
of resources). A constraint calculus is used to analyze constraints and to propagate 
the effects of new constraints through a given constraint set. Fox et al. also identify 
physical constraints, organizational constraints, preferences, enablement constraints, 
and availability constraints. 

5. Objectives - Typically we seek to minimize the cost of a schedule. Cost can be measured 
in terms of time to completion, work-in-progress, total cost of consumed resources, and 
so on. 

6. Scheduling problem - Using the above concepts we can formulate a variety of scheduling 
problems. A reservation is a triple consisting of an activity, a resource, and a time 
interval. Generally, a schedule is a set of reservations that satisfy a collection of 
constraints and optimize (or produce a reasonably good value of) the objective. 

{ (activity, resource, time interval) \ constraints }. 

Many scheduling problem intancess are overconstrained - there are too few resources to 
schedule the activities and satisfy all constraints. Usually overconstrained problems are 
dealt with by relaxing the constraints and trying to satisfy as many of the constraints as 
possible. The usual method is to move constraints into the objective function. This entails 
reformulating the constraint so that it yields a quantitative measure of how well it has been 
satisfied. See further discussion in Section 4.2.4.. 

3.2.     Strategic Transportation Scheduling 

Transportation scheduling specializes the above general notion of scheduling: activities cor- 
respond to movement requirements and resources correspond to transportation assets such 
as planes, ships, and trucks. 
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A typical movement requirement has the following information 

move—type : movement-type i-* BULK-MOVEMENT 
quantity : integer ■-> 2 (STONS - Short TONS) 
release—date : time i-» 0 (seconds from C-date) 
due-date : time H-> 86400 (seconds from C-date) 
poe : port H-> UHHZ 
pod : port H-»- VRJT 
distance : integer i-> 5340 (nautical miles) 
mode : symbol *-> AIR 

Here quantity for AIR movements is in short tons (STONs); the release and due dates are 
in seconds starting from C-DATE; poe (port of embarkation) and pod (port of debarkation) 
are given by code names; distance is in nautical miles, and the transportation mode is either 
AIR or SEA. A collection of movement requirements is called a TPFDD (Time-Phased Force 
Deployment Data). 

Resources are characterized by their capacities (both passenger (PAX) and cargo capacities), 
and travel rate in knots. 

As an example, we used a small dataset extracted from a TUNISIA TPFDD created at 
AFSC. This problem instance involves 480 movement requirements from 20 airports and 3 
seaports to 8 airports and 2 seaports. Available air resources include KClOs, C-141s, C-5s 
and sea resources include tankers (small, medium, and large), RO-ROs, LASHs, sea barges, 
containerships, and breakbulks. 

Eleven constraints characterize a feasible schedule for a simple TPFDD problem: 

1. Consistent POE and POD - The POE and POD of each movement requirement on a 
given trip of a resource must be the same. 

2. Consistent Resource Class - Each resource can handle only some movement types. For 
example, a C-141 can handle bulk and oversize movements, but not outsize movements. 

3. Consistent PAX and Cargo Capacity - The capacity of each resource cannot be ex- 
ceeded. 

4. Consistent Release Time - The start time of a movement (its Available to Load Date 
(ALD)) must not precede its release time. 

5. Consistent Arrival time - The finish time of a trip must not precede the Earliest Arrival 
Date (EAD) of any of the transported movement requirements. 

6. Consistent Due time - The finish time of a movement (its Latest Arrival Date (LAD)) 
must not be later than its due time. 
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7. Consistent Trip Separation - Movements scheduled on the same resource must start 
either simultaneously or with enough separation to allow for return trips. The inher- 
ently disjunctive and relative nature of this constraint makes it more difficult to satisfy 
than the others. 

8. Consistent Resource Use - Only the given resources are used. 

9. Completeness - All movement requirements must be scheduled. 

In the next section we discuss the formalization of the above concepts. This problem does 
not consider certain aspects of transportation scheduling, such as aircrew scheduling, ground 
crew scheduling, maintenance, resource utilization rates, load/unload rates, port character- 
istics, etc. Each of these problem features have been handled in various more elaborate 
specifications. 

3.3.     (Re-)Formulating Domain Theories for Transportation Schedul- 
ing 

In the most general view, scheduling is the construction of a set of reservations that satisfy 
given feasibility constraints and achieve "good" values of an objective function. Formally, 
the schedule is a relation, or even a simple relational database. A formal domain theory 
based on this view is given in Appendix A in [41]. The theory provides precise definitions 
for the concepts, constraints, objectives, and laws used to model this application domain. 

This relational view however is not always the most efficient for particular problems. We 
may be able to reformulate the problem, incorporating constraints and objectives, yielding 
a problem statement that is more amenable to efficient problem-solving. In the following we 
present a series of transformations that reformulate the domain theory. 

In most transportation problems, each movement requirement corresponds to a unique reser- 
vation - it is scheduled exactly once with a unique resource and start time. We can make this 
functional dependence explicit by treating a schedule as a map from movement requirements 
to resource/time tuples. In Figure 1 we show the effect of this reformulation on the schedule 
datatype. 

Next the trip separation constraint suggests that this map is many-to-one, since several move- 
ments can take place simultaneously on the same resource. Inverting the map will induxe a 
partition on movement requirements. In terms of the transportation domain, inverting the 
map will make simultaneous movements explicit and thereby introducing the concept of a 
trip and the manifest of a trip. 

Next we notice that the domain of a schedule map is a product of two types and these types 
have quite different properties (algebras): resources are a discrete set and time is (effectively) 
continuous and linear. The linear nature of time can be exploited by currying (to separate 
the two domain datatypes) and transforming the submap (from time to manifest) to a 
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{ {movement-record,  resource,  start-time > }    a schedule represented as 
a set of reservations 

reify the functional dependence 

{ movement-record   I >■ ( resource,   start-time > } 

invert the map 

{ < resource, start-time > \- ■>■ { movement-record } }    the notion of "trip" and 
"manifest" introduced 

Curry 

{ resource    I ^ { start-time   \ >• { movement-record } } } 

exploit linear order of time 

{ resource   \ >■ [ < start-time, { movement-record } > ] } 

Figure 1: Reformulating a Scheduling Specification 
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sequence, thereby making the linear structure of time explicit and introducing the concept 
of an itinerary. 

This series of reformulations has dramatic effect on the trip separation constraint. In the 
initial formulation (in terms of reservations) this constraint involves 0(n2) binary constraints 
between the n movements scheduled on a given resource. In the final formulation (in terms 
of a linearized inverse map) this constraint is reduced to 0(n) binary constraints between 
the start times of consecutive trips. 

For example, on a transportation problem involving over 15,000 movement requirements ob- 
tained from the U.S. Transportation Command, the scheduler produces a complete feasible 
schedule in about five minutes. A straightforward constraint network formulation based on 
this problem data would have over 31,000 variables and 120,125,000 constraints. Incorporat- 
ing some of the structure of the problem, such as the linearity of time, allows reformulating 
this to a system of about 108,700 constraints. However, this is still a such large formulation 
that it seems an implicit representation is necessary to find feasible schedules efficiently. 

The final reformulation is given in Appendix B in [41] and is the theory actually used to 
derive a scheduler. 

3.4.    Formal Specification of a Scheduler 

The informal specification above can be expressed as follows: 

function TS 
(mvrs : seq(movement-record), 
assets : seq(resource-name)) 

returns (sched: map(resource-name,seq(trip)) | 
Consistent-POE (sched) 
A Consistent-POD(sched) 
A Consistent-Release-Times (sched) 
A Consistent-Arrival-Times (sched) 
A Consistent-Due-Times (sched) 
A Consistent-Trip-Separation(sched) 
A Consistent-Pax-Resource-Capacity(sched) 
A Consistent-Cargo-Resource-Capacity(sched) 
A Consistent-Movement- Type-and-Resource (sched) 
A Available-Resources-Used(assets, sched) 
A Scheduled-mvrs(sched) = seq-to-set(mvrs)) 

This specifies a function called TS that takes two inputs, a sequence of movement records 
called mvrs and a sequence of resources called assets. The function returns a schedule, which 
has type map^esource-name, seq(trip)) and must satisfy the 11 conjoined constraints. Each 
constraint is defined in the domain theory; for example: 
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function CONSISTENT-DUE-TIMES 
(sched : schedule) : boolean 
= V(rsrc : resource-name, trp : integer, mvr : movement-record) 

(rsrc € domain(sched) 
A trp € [l..size(sched(rsrc))\ 
A mvr S sched(rsrc)(trp).manifest 

sched(rsrc)(trp).start-time 
< (mvr.due-date - sched(rsrc)(trp).trip-duration) 

This predicate expresses the constraint that every scheduled movement-record arrives before 
its due date. 

4.     Synthesizing a Scheduler 

4.1.     Approach 

4.1.1.    Problem Theories 

We briefly review some basic concepts from algebra and logic. A theory is a structure 
(S, S, A) consisting of a set of sort symbols S, operations over those sorts S, and axioms A 
to constrain the meaning of the operations. A theory morphism (theory interpretation) maps 
from the sorts and operations of one theory to the sorts and expressions over the operations 
of another theory such that the image of each source theory axiom is valid in the target 
theory. A parameterized theory has formal parameters that are themselves theories [14]. 
The binding of actual values to formal parameters is accomplished by a theory morphism. 
Theory T2 = (S2,E2, A2) extends (or is an extension of) theory T\ = (5i,Si,Ai) if Si C S2, 
Sx C S2, and At C A2. 

Problem theories define a problem by specifying a domain of problem instances or inputs and 
the notion of what constitutes a solution to a given problem instance. Formally, a problem 
theory B has the following structure. 

Sorts D, R 
Operations   I: D —*■ Boolean 

0 : D x R —► Boolean 

The input condition I(x) constrains the input domain D. The output condition 0(x,z) 
describes the conditions under which output domain value z G R is a feasible solution with 
respect to input x € D. Theories of booleans and sets are implicitly imported. Problems of 
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finding optimal feasible solutions can be treated as extensions of problem theory by adding 
a cost domain, cost function, and ordering on the cost domain. 

For example, the problem of finding feasible schedules can be presented as a problem theory 
via a theory interpretation into the domain theory of transportation scheduling:2 

D     i-+     seq(movement-^record) x seq(resource) 
I      t->     \(Mvrs, resources) true 
R     i—>     map(resource, seq(trip)) 
0     (-»■     \(Mvrs, resources, sched) 

Consistent—POE(sched) 
A Consistent—POD(sched) 
A Consistent—Release—Times(sched) 
A Consistent—Arrival—Times(sched) 
A Consistent—Due—Times(sched) 
A Consistent—Trip—Separation(sched) 
A Consistent—Pax—Resource—Capacity (sched) 
A Consistent—Cargo—Resource—Capacity (sched) 
A Consistent—Movement—Type—and—Resource(sched) 
A Available—Resources—Used(resources, sched) 
A Scheduled-^mvrs(sched) = seq—to-set(mvrs) 

4.1.2.    Algorithm Theories 

An algorithm theory represents the essential structure of a certain class of algorithms A 
[43]. Algorithm theory A extends problem theory B with any additional sorts, operators, 
and axioms needed to support the correct construction of an A algorithm for B. A theory 
morphism from the algorithm theory into some problem domain theory provides the problem- 
specific concepts needed to construct an instance of an A algorithm. 

For example, global search theory (presented below in Section 6.2.1) extends problem theory 
with the basic concepts of backtracking: subspace descriptors, initial space, the splitting and 
extraction operations, filters, and so on. A divide-and-conquer theory would extend problem 
theory with concepts such as decomposition operators and composition operators [30, 34]. 

4.2.    Synthesizing a Scheduler 

There are two basic approaches to computing a schedule: local and global. Local methods 
focus on individual schedules and similarity relationships between them. Once an initial 
schedule is obtained, it is iteratively improved by moving to neighboring structurally similar 

The domain theory includes definitions for the types of movement-record, resource, trip (a record com- 
prised of start-time and manifest), and schedule (a map from resource to sequence of trip). 
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schedules. Repair strategies [52, 22, 3, 28], and fixpoint iteration [7], and linear programming 
algorithms are examples of local methods. 

Global methods focus on sets of schedules. A feasible or optimal schedule is found by 
repeatedly splitting an initial set of schedules into subsets until a feasible or optimal schedule 
can be easily extracted. Backtrack, heuristic search, and branch-and-bound methods are 
all examples of global methods. We explore the application of global methods. In the 
following subsections we formalize the notion of global search method and show how it can 
be applied to synthesize a scheduler. Other projects taking a global approach include ISIS 
[12], OPIS/DITOPS [47], and MicroBoss [25] (all at CMU). 

4.2.1.    Global Search Theory 

The basic idea of global search is to represent and manipulate sets of candidate solutions. 
The principal operations are to extract candidate solutions from a set and to split a set into 
subsets. Derived operations include various filters which are used to eliminate sets containing 
no feasible or optimal solutions. Global search algorithms work as follows: starting from an 
initial set that contains all solutions to the given problem instance, the algorithm repeatedly 
extracts solutions, splits sets, and eliminates sets via filters until no sets remain to be split. 
The process is often described as a tree (or DAG) search in which a node represents a set of 
candidates and an arc represents the split relationship between set and subset. The filters 
serve to prune off branches of the tree that cannot lead to solutions. 

The sets of candidate solutions are often infinite and even when finite they are rarely rep- 
resented extensionally. Thus global search algorithms are based on an abstract data type 
of intensional representations called space descriptors (denoted by hatted symbols). In ad- 
dition to the extraction and splitting operations mentioned above, the type also includes 
a predicate satisfies that determines when a candidate solution is in the set denoted by a 
descriptor. Further, there is a refinement relation on spaces that corresponds to the subset 
relation on the sets denoted by a pair of descriptors. 

The various operations in the abstract data type of space descriptors together with problem 
specification can be packaged together as a theory. Formally, abstract global search theory 
(or simply gs—theory) Q is presented in Figure 2, where D is the input domain, R is the 
output domain, / is the input condition, 0 is the output condition, R is the type of space 
descriptors, / defines legal space descriptors, r and s vary over descriptors, top(x) is the 
descriptor of the initial set of candidate solutions, Satisfies (z, f) means that z is in the set 
denoted by descriptor r or that z satisfies the constraints that f represents, and Extract(z, f) 
means that z is directly extractable from f. 

The relations Split—Arg and Split—Constraint are used to determine and perform splitting. 
In particular, if Split—Arg(x, r, c) then c is information that characterizes (or informs) one 
branch of the split. Split—Constraint(x, r, c, s) means that s results from incorporating 
information c into the descriptor r (with respect to input x). Split—Arg is used to control 
the generation of children of a node in the search tree and Split—Constraint is used to 
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Spec Global-Search 

Sorts D input domain 
R output domain 
R subspace descriptors 
C splitting information 

Operations 
/ : D —*■ boolean 
0 : D x R—+ boolean 
I: D x R -> boolean 
Satisfies : R x R-+ boolean 
Split—Arg : D x C x Ä —»• boolean 
Split—Constraint-.DxRxCxR 
Extract : R x R —*• boolean 
$ : D x Rx R-+ boolean 
£ : D x R -+ boolean 
3 : D x R x R-+ boolean 

top: D -> R 
bot : R 

input condition 
input/output condition 
subspace descriptors condition 
denotation of descriptors 
specifies arguments to split constraint 

boolean   parameterized splitting constraint 
extractor of solutions from spaces 
cutting constraint 
cutting constraint 
refinement relation 
initial space 
inconsistent space 

Axioms 
GSO. All feasible solutions axe in the top space 

I(x) A 0(x,z) => Satisfies(z,top(x)) 
GS1. All solutions in a space are finitely extractable 

I(x) A I(x,r) 
=*■ (Satisfies(z,f) <*=*- 3(s) ( Split*(x, f,s) A Extract(z,s))) 

GS2. Specification of Cutting Constraint 
Satisfies(z,r) A  0(x,z) =>■ $(x,z,r) 

GS3. Definition of Cutting Constraint on Spaces 
£(s,r)  «=» V(z:R)(Sat(z,r) ==►  *(z,*,r)) 

GS4. Definition of Refinement 
f 3 s -«=>• V(z : R)(Satisfies(z,s) => Satisfies (Zi?)) 

GS5. (Ä, 3, n,iop, 6o<) is a bounded meet-semilattice with 6oi as universal lower bound. 

end spec 

Figure 2: Global Search Theory 
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specify one child. Split—Constraint can be thought of as a parameterized constraint whose 
alternative arguments axe supplied by Split—Arg. 

The refinement relation fUS holds when s denotes a subset of the set denoted by f. Further, 
R together with 3 forms a bounded semilattice. This structure will play a crucial role in 
constraint propagation algorithms. 

Note that all variables in the axioms are assumed to be universally quantified unless explicitly 
specified otherwise. Axiom GSO asserts that the initial descriptor r0(x) is a legal descriptor. 
Axiom GS1 asserts that legal descriptors split into legal descriptors and that Split induces 
a well-founded ordering on spaces. Axiom GS2 constrains the denotation of the initial 
descriptor — all feasible solutions are contained in the initial space. Axiom GS3 gives the 
denotation of an arbitrary descriptor r — an output object z is in the set denoted by r if 
and only if z can be extracted after finitely many applications of Split to f where 

Split*{x,r,s) <=> 3(k:Nat) SpUtk{x,r,s) 

and 
Split0(x,r,t) <=► r=i 

and for all natural numbers k 
Splük+1{x,f,t) 

3(s : R, i: C) ( Split-Arg (x,r,i) A Split-Constraint(x,f,i,s) A Splitk(x,s,i)). 

Axiom GS4 asserts that if r splits to 5 then r also refines to s; thus the refinement relation on 
R is weaker than the split relation. We also need the axioms that (R, 3,n) is a semilattice. 
For simplicity, we write f~3 s rather than the correct 3 (x,f,s); and similarly fn§. 

For example, a simple global search theory of scheduling has the following form. Schedules 
are represented as maps from resources to sequences of trips, where each trip includes earliest- 
start-time, latest-start-time, port of embarkation, port of debarkation, and manifest (set of 
movement records or ULNs + CINs + PINs from the TPFDD). The type of schedules has the 
invariant (or subtype characteristic) that for each trip, the earliest-start-time is no later than 
the latest-start-time. A partial schedule is a schedule over a subset of the given movement 
records. 

The initial (partial) schedule is just the empty schedule - a map from the available resources 
to the empty sequence of trips. A partial schedule is extended by first selecting a movement 
record mvr to schedule, then selecting a resource r, and then a trip ionr (either an existing 
trip or a newly created one) - the triple (mvr, r, t) constitutes the information c of Split—Arg. 
Split—Constraint given (mvr, r, t) creates an extended schedule that has mvr added to the 
manifest of trip t on resource r. The alternative ways that a partial schedule can be extended 
naturally gives rise to the branching structure underlying global search algorithms. 

The formal version of this global search theory of scheduling can be inspected in the domain 
theory in Appendix C in [41]. 
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4.2.2.    Pruning Mechanisms 

When a partial schedule is extended it is possible that some problem constraints are violated 
in such a way that further extension to a complete feasible schedule is impossible. In tree 
search algorithms it is crucial to detect such violations as early as possible. 

Pruning tests are derived in the following way. The test 

3(z) (Satisfies{z,r) A 0(x,z)) (1) 

decides whether there exist any feasible solutions that are in the space denoted by r. If 
we could decide this at each node of our branching structure then we would have perfect 
search - no deadend branches would ever be explored. In practice it would be impossible 
or horribly complex to compute (1), so we rely instead on an inexpensive approximation to 
it. In fact, if we approximate (1) by weakening it (deriving a necessary condition of it) we 
obtain a sound pruning test. That is, suppose we can derive a test $(i, f) such that 

3(sched) (Satisfies(z,f) A 0(x,z)) => $(z, r). (2) 

By the contrapositive of (2), if ->$(i, f) then there are no feasible solutions in r, so we can 
eliminate it from further processing. A global search algorithm will test $ at each node it 
explores, pruning those nodes where the test fails. 

More generally, necessary conditions on the existence of feasible (or optimal) solutions below 
a node in a branching structure underlie pruning in backtracking and the bounding and 
dominance tests of branch-and-bound algorithms [32]. 

It appears that the bottleneck analysis advocated in the constraint-directed search projects at 
CMU [11, 25] leads to a semantic approximation to (1), but neither a necessary nor sufficient 
condition. Such a heuristic evaluation of a node is inherently fallible, but if the approximation 
is close enough it can provide good search control with relatively little backtracking. 

To derive pruning tests for the strategic transportation scheduling problem, we instanti- 
ate (1) with our definition of Satisfies and 0 and use an inference system to derive nec- 
essary conditions. The resulting tests are fairly straightforward; of the 11 original fea- 
sibility constraints, 7 yield pruning tests on partial schedules. For example, the partial 
schedule must satisfy Consistent-POE, Consistent-POD, Consistent-Pax-Resource-Capacity, 
Consistent-Cargo-Resource-Capacity., Consistent-Movement-Type-and-Resource, and Available- 
Resources-Used. The reader may note that computing these tests on partial schedules is 
rather expensive and mostly unnecessary - later program optimization steps will however 
reduce these tests to fast and irredundant form. For example, the first test will reduce to 
checking that when we place a movement record mvr on trip i, we check that the POE of 
mvr and t are consistent. 

For details of deriving pruning mechanisms for other problems see [32, 42, 43, 33]. 
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cutting 
constraints 

Figure 3: Global Search Subspace and Cutting Constraints 

4.2.3.     Cutting Constraints and Constraint Propagation 

Constraint propagation is a more general technique that is crucial for early detection of 
infeasibility. We developed a general mechanism for deriving constraint propagation code 
and applied it to scheduling. 

Each node in a backtrack tree can be viewed as a data structure that denotes a set of 
candidate solutions - in particular the solutions that occur in the subtree rooted at the node 
(see Figure 3). Thus the root denotes the set of all candidate solutions found in the tree. 

Pruning has the effect of removing a node (set of solutions) from further consideration. In 
contrast, constraint propagation has the effect of changing the space descriptor so that it 
denotes a smaller set of candidate solutions. The effect of constraint propagation is to spread 
information through the subspace descriptor resulting in a tighter descriptor and possibly 
exposing infeasibility. Pruning can be treated as a special case of propagation in which a 
space is refined to descriptor that denotes the empty set of solutions. 

Constraint propagation is based on the notion of cutting constraints which are necessary 
conditions ^(x, z, f) that a candidate solution z satisfying f is feasible: 

V(ar: D,r : R, z : R)(Satisfies(z,r) A 0(x,z) =» $(x,z,r)) (3) 

See Figures 3 and 4.   In order to get a test on spaces that decides whether $ has been 
incorporated, we make one further definition: 

£(x, r) V(z : R)(Satisfies(z,r) =*■ ^(x,z,f)) (4) 
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fixpoint of the cutting process (ry) )cut 

Figure 4: Pruning and Constraint Propagation 

The test £(x, r) holds exactly when all candidate solutions in r satisfy #, and we say that r 
satisfies £. 

The key question at this point is: Given a descriptor r that doesn't satisfy £, how can we 
incorporate £ into r? The answer is to find the greatest refinement of r that satisfies £; we 
say i incorporates £ into r if 

i = max^{$ | f 3 s A £(x,s)}. (5) 

which asserts that i is maximal over the set of descriptors that refine s and satisfy £, with 
respect to ordering 3- We want i to be a refinement of f so that all of the information in 
f is preserved and we want t to be maximal so that no other information than f and £ is 
incorporated into i. 

The next question concerns the conditions under which Formula (5) is satisfiable. Assuming 
that R is a semilattice, we can use variants of Tarski's fixpoint theorem (c.f. [7]): 

Theorem If there is a function / such that 

1. / is monotonic on R     (i.e. s OL i =*> f(x, s) 3 /(z> t)) 

2. / is deflationary      (i.e. r 3 /(z, r)) 
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3. / has fixed-points satisfying £ (i.e. f(x, f) = f   >$=>   £(z, f)) 

then (1) i — max^is | r 3 s A £(z,s)} exists 
and (2) i is the greatest fixpoint of /; i.e. i can be computed by iteratively applying f to f 
until a fixpoint is reached. 

The challenge is to construct a monotonic, deflationary function whose fixed-points satisfy 
£. A general construction in terms of global search theory can be sketched as follows. Let 

f(xf)-fr if far) 

The intent is to define / so that it has fixpoints exactly when £(x, r) holds. When £(x, f) 
doesn't hold, then we know (by the definition of £ and the contrapositive of formula (3)) 
that 

3(z : R)(Satisfies(z,r) A ->0(x,z)) 

i.e. there are some infeasible solutions in the space described by r. Ideally -^(z, r) is a 
constructive assertion, so it provides information on which solutions are infeasible and how 
to eliminate them. In place of the ellipsis above we require a new descriptor that refines 
r (so / is decreasing on all inputs), allows / to be monotone, and eliminates some of the 
infeasible solutions indicated by -^(x, r). In general it is difficult to see how to achieve this 
end without assuming special structure to R and £. 

We have identified some special cases for which an analytic procedure can produce the nec- 
essary iteration function / from £. These special cases subsume our scheduling applications 
and many related Constraint Satisfaction Problems (CSP) problems. Suppose that the con- 
straint £ has the form 

fl(i,f)3f (6) 

where B(x, f) is monotonic in r. We say that £ is a Horn-like constraint by generalization of 
Horn clauses in logic. Notice that the occurrence of f on the right-hand side of the inequality 
has positive polarity (i.e. it is monotonic in r), whereas the occurrence(s) of f on the left- 
hand side have negative polarity (i.e. are antimonotonic). If the constraint were boolean 
(with B and r being boolean values and 3 being implication), then this would be called a 
definite Horn clause. When our constraints are Horn-like, then there is a simple definition 
for the desired function /: 

Jl'J     [%f)nf if-<B(x,r)2r 

or equivalently 
/(z, f) = 5(z, r) n r. 

It is easy to check that / is monotone in f, deflationary, and has fixed-points exactly when 
£ holds.  Therefore, simple iteration of / will converge to the descriptor that incorporates 
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£ into f. However, if f is an aggregate structure such as a tuple or map, then the changes 
made at each iteration may be relatively sparse, so the simple iteration approach may be 
grossly inefficient. We found this feature to be characteristic of scheduling and other CSPs. 
Our approach to solving this problem is to focus on single point changes and to exploit 
dependence analysis. For each component of r we define a separate change propagation 
procedure. The arguments to a propagation procedure specify a change to the component. 
This change is performed and then the change procedures for all other components that 
could be affected by the change are invoked. Static dependence analysis at design-time is 
used to determine which constraints could be affected by a change to a given component. 

A program scheme for global search with constraint propagation is presented in Figure 5. 
The global search design tactic in KIDS first instantiates this scheme, then invokes a tactic 
for synthesizing propagation code to satisfy the specification F—split—and—propagate. 

CSPs with Horn-like constraints 

We now elaborate the previous exposition of propagation of Horn-like constraints arising in 
CSPs. To keep matters simple, yet general, suppose that the output datatype R is map(VAR, 
VALSET), where VAR is a type of variables, and VALSET is a type that denotes a set of 
values (this implies that all the variables have the same type and refinement ordering), and 
the H relation has the form: 

f 3 s iff  f\ f(v) 3 s{v). 
V 

Suppose further that £ is a conjunction of constraints giving bounds on the variables: 

£(z,r) «=» A5,(i,f):f(t)) 
V 

where Bv(x, f) is monotonic in f. Under these assumptions, -^(x, r) implies that the bound- 
ing constraint on some variable v is violated; i.e. 

-iBv(x,r) 3 r(v). 

To "fix" such a violation we can change the current valset of v to 

Bv(z,f)rir(v), 

which simultaneously refines f(u), since 

f(v) 3 Bv{x, f) n f(v) 

and reestablishes the constraint on v, since 

Bv(x,r)2Bv(x,r)nr(v). 

Let 
B(x, f) = {| u —* Bu(x, f) n f(u) | u G domain(r) |} 
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Spec Global-Search-Program (T :: Global-Search) 

Operations 

F-initial-propagate (x : D \ I(x)) 

returns (i : R \ i = maxzi {s | top(x) 3 s A I(x,s) A £(z, s)}) 

F-split-and-propagate 

(x :D, r: R, c: C 

\ I(x) A I(x,r) A Split—Arg (x,r,c) A £(z, r) A f ^ bot) 

returns (£ : Ä | £ = maa;g {£ | r 3 s A 7(z, s) 

A Split(x,r,c,s) A £(z,s)}) 

F-^s (x:D,f:R\  I(x) A J(z, f) A $(z, f)) 
returns (z : R \ 0(x,z) A Satisfies(z, f)) 

= if 3(z)(Extract(z,r) A 0(x,z)) 
then some(z) (Extract(z, r) A 0(z,z)) 

else some(z) 3(e : C, £ : Ä) 
(Split—Arg(x, f, c) 

A £ = F-split-and-propagate(x, f,c) A £ ^ bot 

Az = F-gs(x, £)) 

F (x : 2} I !(*)) 
returns (z : R\ 0(x, z)) 

— some(z) 3(i) (i = F-initial-propagate(x) 

l\i± bot 
A z = F-gs(x, t)) 

end spec 

Figure 5: Global Search Program Theory 
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then, define / as: 
f(x,r) — fV\ B(x,r) 

Constraint propagation is treated here as iteration of / until a fixed-point is reached. Ef- 
ficiency requires that we go farther, since only a sparse subset of the variables in f will 
be updated at each iteration. If we implemented the iteration on a vector processor or 
SIMD machine, the overall computation could be fast, but wasteful of processors. On a 
sequential machine, it is advantageous to analyze the constraints in £ to infer dependence of 
constraints on variables. That is, if (the valset of) variable v changes, which constraints in 
£ could become violated? This dependence analysis can be used to generate special-purpose 
propagation code as follows. 

For each variable v, let affects (v) be the set of variables whose constraints could be violated 
by a change in u; more formally, let 

affects(v) = {u \ v occurs in Bu }. 

We can then generate a set of procedures that carry out the propagation/iteration of /: For 
each variable v, generate the following propagation procedure: 

Propagate» (x : D, r : R, new-^valset: VALSET 
\I{x) A I{x,r) 
A f(v) D new-valset 
A Bv(x, r) II new—valset) 

= let (s : R = map—shadow(r,v, new—valset)) 
if ->/(z, s) then bot 
else 
... for each variable u in affects(v)... 
... generate the following code block ... 
if s = bot then bot 
else (if ->(Bu(x,s) 3 s(u)) 

then 5  <— Propagateu(x, s, Bu(x, s) l~l s(u))); 

s 
end 

where map-shadow(r, v, new-valset) returns the map r modified so that r(v) = new-valset. 

To finish up, if Split(x, r, i, s) has the form 

s(u) = C(z, f, i) 

for some function C that yields a refined valset for variable u, then we can satisfy F—split— 
and—propagate as follows: 

F—split—and—propagate(x, r, i) = propagateu(f, C(x, r, i)). 
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The change to u induced in the call to propagateu will in turn trigger changes to other 
variables, and so on. 

We have described the generation of constraint propagation in a relatively simple setting. 
One of the authors (Westfold) was largely responsible for the development and implemen- 
tation of this work. The implementation treats a much broader range of problem features 
than has been described above, including 

1. Heterogeneous variables (and semilattice/refinement structure) 

2. Multiple constraints on each variable 

3. Indexed variables 

4. Conditional constraints 

5. Dynamic set of variables 

6. Ordering of constraints in propagation procedures 

There are many ways to implement constraint propagation, this being just one. Our ap- 
proach is useful when the affects relation is relatively sparse, so special control code to follow 
dependences and fixing violations is efficient. An alternative approach is to reify affects via 
explicit links between variables, forming a constraint network. The synthesis of the propa- 
gation control strategy is relatively simple, since we only need to follow dependence links. 
Disadvantages of this approach include the size of the constraint network and the cost of 
maintaining it. This is a common approach in the CSP literature. 

Our model of constraint propagation generalizes the concepts of cutting planes in the Op- 
erations Research literature [23] and the forms of propagation studied in the constraint 
satisfaction literature (e.g. [17]). Our use of fixed-point iteration for constraint propagation 
is similar to Paige's work on fixed-point iteration in RAPTS [7]. The main differences are 
(1) RAPTS expects the user to supply the monotone function as part of the initial speci- 
fication whereas we derive it from a more abstract statement of the problem; (2) RAPTS 
instantiates a straightforward iteration scheme and then performs optimizations. Such an 
approach would be too inefficient for scheduling applications, so we use dependence analysis 
to generate code that is specific to the constraint system at hand. 

Constraint Propagation for Transportation Scheduling 

For transportation scheduling, each iteration of the Propagate operation has the following 
form, where esU denotes the earliest-start-time for trip i and est'{ denotes the next value of 
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the earliest-start-time for trip i (analogously, Isti denotes latest-start-time), and roundtripi 
is the roundtrip time for trip i on resource r. For each resource r and the ith trip on r, 

esti 
est'i = max I  esti-x + roundtripi 

max—release—time (manifest ,•) 

' 1st, 
1st'; = mm <  fs£,-+i — roundtripi 

min—finish—time (manifest,-) 

Here max—release—time (manifest;) computes the max over all of the release times of move- 
ment requirements in the manifest of trip i and min—finish—time (manifest;) computes the 
minimum of the finish times of movement requirements in the same manifest. Boundary 
cases must be handled appropriately. 

After adding a new movement record to some trip, the effect of Propagate will be to shrink 
the 

(earliest—start—time,latest—start—time) 

window of each trip on the same resource. If the window becomes negative for any trip, then 
the partial schedule is necessarily infeasible and it can be pruned. 

The constraint propagation code generated for TS in Appendix D in [41] is nearly as fast as 
handwritten propagation code for the same problem (cf. Appendix C in [36]). 

4.2.4.    Constraint Relaxation 

Many scheduling problems are overconstrained. Overconstrained problems are typically han- 
dled by relaxing the constraints. The usual method, known as Lagrangian Relaxation [23], 
is to move constraints into the objective function. This entails reformulating the constraint 
so that it yields a quantitative measure of how well it has been satisfied. 

Another approach is to relax the input data just enough that a feasible solution exists. To 
test this approach, we hand-modified one version of KTS so it relaxes the LAD (Latest 
Arrival Date) constraint. The relaxation takes place only when there is no feasible solution 
to the problem data. KTS keeps track of a quantitative measure of each LAD violation (e.g. 
the difference between the arrival date of a trip and the LAD of a movement requirement in 
that trip). If there is no feasible reservation for the movement requirement being scheduled, 
then KTS uses the recorded information to relax its the LAD. The relaxation is such as to 
minimally delay the arrival of the requirement to its POD. 

This technique, which we call data relaxation, can be described more generally. Suppose 
that we specify a certain constraint to be relaxable. Whenver we detect that the input data 
has no feasible solution, we attempt to relax the input data just enough to allow a feasible 
solution. Of course, the problem-solving process and data relaxation are interleaved. 
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Data 
Sets 

(Air only) 

# of input 
TPFDD 

records (ULNs) 

#of 
individual 
movements 

# of scheduled 
items after 

splitting 

Solution 
time 

Msec per 
scheduled 

item 

CDART 296 330 0.5 sec 1.5 

CSRT01 1,600 1,261 3,557 44 sec 12 

096-KS 20,400 4,644 6,183 86 sec 14 

9002T Borneo 28,900 10,623 15,119 290 sec 20 

Figure 6: KTS Scheduling Statistics 

At each global search iteration we evaluate this objective function for all candidate solutions. 
Using these values the algorithm takes a greedy decision of which branch of the global search 
tree should be split next. The result is a heuristically-guided algorithm that finds good but 
not necessarily optimal schedules. 

It remains an open task to formalize the notion of data relaxation and to develop a tactic 
for synthesizing relaxation code in the context of global search with constraint propagation. 

4.2.5.    Using KIDS 

In developing a new scheduling application, most of the user's time is spent building a 
theory of the domain. Our scheduling theories have evolved over months of effort into 
50-70 pages of text. It currently takes about 90 minutes to transform our most complex 
scheduling specification (for ITAS) into optimized and compiled CommonLisp code for Sun 
workstations. Evolution of the scheduler is performed by evolving the domain theory and 
specification, followed by regeneration of code. 

Currently, the global search deisgn tactic in KIDS is used to design an algorithm for F 
and F—gs in Figuregs-scheme. A specialized tactic for generating constraint propagation 
code for Horn-like constraints is used to generate code for F-split-and-propagate. Once the 
algorithm is designed, then a series of simplification and common-subexpression-elimination 
transformations are applied. A trace of the KIDS derivation is given in Appendix D in [41]. 
See [42] for a detailed description of a session with KIDS. 

4.3.    KTS - Strategic Transportation Scheduling 
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The KTS schedulers synthesized using the KIDS program transformation system are ex- 
tremely fast and accurate [44, 45]. The chart in Figure 6 lists 4 TPFDD problems, and 
for each problem (1) the number of TPFDD lines (each requirement line contains up to 
several hundred fields), (2) the number of individual movement requirements obtained from 
the TPFDD line (each line can specify several individual movements requirements), (3) the 
number of movement requirements obtained after splitting (some requirements are too large 
to fit on a single aircraft or ship so they must be split), (4) the cpu time to generate a com- 
plete schedule, and (5) time spent per scheduled movement. Similar results were obtained 
for sea movements. The largest problem, Borneo NEO, is harder to solve, because of the 
presence of 29 movement requirements that are inherently unschedulable: their due date 
comes before their availability date. Such inconsistencies must be expected and handled by 
a realistic system. KTS simply relaxes the due date the minimal amount necessary to obtain 
a feasible schedule. 

We compared the performance of KTS with several other TPFDD scheduling systems: 
JFAST, FLOGEN, DITOPS, and PFE. We do not have access to JFAST and FLOGEN, 
but these are (or were) operational tools at AMC (Airlift Mobility Command, Scott AFB). 
According to [10] and David Brown (retired military planner consulting with the Planning 
Initiative), on a typical TPFDD of about 10,000 movement records, JFAST takes several 
hours and FLOGEN about 36 hours. KTS on a TPFDD of this size will produce a detailed 
schedule in one to three minutes. So KTS seems to be a factor of about 25 times faster than 
JFAST and over 250 times faster than FLOGEN on medium-scale problems. The currently 
operational ADANS system reportedly runs at about the same speed as FLOGEN. When 
comparing schedulers it is also important to compare the transportation models that they 
support. KTS has a richer model than JFAST (i.e. handles more constraints and problem 
features), but less rich than ADANS. The ITAS effort described in the next section reflects 
our efforts to synthesize schedulers that have at least the richness of the ADANS model. 

The DITOPS project at CMU also models scheduling as a constraint satisfaction problem. 
However, DITOPS effectively interprets its problem constraints, whereas the transforma- 
tional approach can produce highly optimized "compiled" constraint operations. DITOPS 
emphasizes complex heuristics for guiding the search away from potential bottlenecks. In 
contrast KTS uses simple depth-first search but emphasizes the use of strong and extremely 
fast pruning and constraint propagation code. DITOPS requires minutes to solve the CD ART 
data, whereas KTS finds a complete feasible solution in 0.5 seconds. 

Comparison with PFE (Prototype Feasibility Estimator, built by BBN based on the Trans- 
portation Feasibility Estimator system): On the MEDCOM-SITUATION from the CPE 
(Common Prototype Environment), KTS is about 5 times faster than PFE and produces a 
SEA schedule with only 14% of the delay of the PFE schedule. KTS also produces a far 
more accurate estimate of the planes needed to handle the AIR movements, since PFE is 
only estimating feasibility whereas KTS produces a detailed schedule. 

In our Strategic TPFDD scheduler KTS, we explored issues of speed and embedding KTS 
into an easy-to-use GUI, complete with ability to edit the data model (TPFDD, resource 
classes and instances, and port models), to schedule, apply various analysis tools, and to 
dynamically reschedule. KTS is available from Kestrel via ftp to participants in the PI. 
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4.4.    ITAS - In-Theater Airlift Scheduler 

In 1994 we began to develop a scheduler to support PACAF (Pacific Air Force) at Hickham 
AFB, Honolulu which is tasked with in-theater scheduling of a fleet of 26 C-130 cargo aircraft 
in the Pacific region. Several variants of a theater scheduler, called ITAS for In-Theater 
Airlift Scheduler, have been developed to date, and more are planned. The system runs 
on laptop computers (Apple Powerbook). The interface to ITAS and integration with a 
commercial database package have been developed by BBN. Users enter information about 
movement requirements, available resources, port features, etc. and ITAS automatically 
generates a schedule, displayed in a gantt-like "rainbow" chart. The schedule can also be 
printed in the form of ATO's (Air Tasking Orders). 

The ITAS schedulers have emphasized flexibility and rich constraint modeling. The version 
of ITAS installed at PACAF in February 1995 simultaneously schedules the following types 
of resources: 

1. aircraft 

2. aircrews and their duty day cycles 

3. ground crews for unloading 

4. parking space at ports 

each of which may have a variety of attendant constraints and problem features. 

5.     Classification Approach to Algorithm Design 

In this section we introduce a new knowledge-based approach to algorithm design. We have 
been developing it in order to support the incremental application of problem-solving meth- 
ods to scheduling problems. Our techniques enable us to integrate at a deep semantic level 
problem-solving methods from Computer Science (e.g. divide-and-conquer, global search), 
Artificial Intelligence (e.g. heuristic search, constraint propagation, neural nets), and Op- 
erations Research (e.g. Simplex, integer programming, network algorithms). Furthermore 
these techniques have applications far wider than algorithm design, since they apply to the 
incremental application of any kind of knowledge formally represented in a hierarchy. 

5.1.     Technical Foundations — Theories 

A theory (i.e. first-order theory presentation) defines a language and constrains the possible 
meanings of its symbols by axioms and inference rules. Theories can be used to express 
many kinds of software-related artifacts, including domain models [48], formal requirements 
[2, 9, 24, 26], programming languages [5,14,18], abstract data types and modules [9,13, 16], 
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and abstract algorithms [43]. There has been much work on operations for constructing larger 
theories from smaller theories [2, 6, 27]. 

A theory morphism translates the language of one theory into the language of another theory 
in a way that preserves theorems. Theory morphisms underlie several aspects of software 
development, including specification refinement and datatype implementation [4, 24, 27, 50], 
the binding of parameters in parameterized theories [8, 14], algorithm design [20, 43, 51], 
and data structure design [29]. There has been work on techniques for composing implemen- 
tations in a way that reflects the structure of the source specification [2, 27]; however these 
composition techniques leave open the problem of constructing primitive morphisms. 

Theories together with their morphisms define a category. 

5.2.    Refinement Hierarchy and the Ladder Construction 

Abstract programming knowledge can be represented by theories. For example, we showed 
how to represent divide-and-conquer [30], global search (binary search, backtrack, branch- 
and-bound) [32], and local search (hillclimbing) [20] as theories. The same approach can be 
applied to data structures [4], architectures [15], and graphical displays (e.g. Gantt charts). 

A collection of problem-solving methods can. be organized into a refinement hierarchy using 
theory morphisms as the refinement arrow [43]. See Figure 5.2.. The question emerges of 
how to access and apply knowledge in such a hierarchy. The answer is illustrated in the 
"ladder construction" diagram in Figure 8. 

The left-hand side of the ladder is a path in the refinement hierarchy of algorithm theories 
starting at the root (Problem Theory). Speco is a given specification theory of a problem. 
The ladder is constructed a rung at a time from the top down. The initial arrow (theory mor- 
phism) from problem theory to Speco is trivial. Subsequent rungs are constructed abstractly 
as follows: 

Pi 
TTli 

■>Si 

Ii 

m: «+i 
Pi+i  > Pi+i © Si 

where P,+i © 5,- is the pushout theory (shared union) and S,+i is an extension of 5,- deter- 
mined by constructing the theory morphism m"+1.  The morphism m;+i is determined by 
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Problem       mo 
theory    > Speco 
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Satisfaction > Speci 

Mathematical   mi        * 
Programming > Speci 

Linear         rnz 
Programming > Spec^ 

Transshipment V 
Problem        > ? 

Figure 8: Classification Approach to Design 
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composition. 

5.3.    Constructing Theory Morphisms 

Constructing the pushout theory is straightforward. The main issue arising from this ladder 
construction is how to construct the theory morphism m'/+1 from the pushout theory to 5,+i 
(an extension of Si). We formalized four basic methods for constructing theory morphisms 
last year, by analyzing the algorithm design tactics in KIDS [38]. Two of the techniques are 
well-known or obvious. However we identified two new general techniques for constructing 
theory morphisms: unskolemization and connections between theories. Roughly put, un- 
skolemization works in the following way. A theory morphism from theory A to theory B is 
based on a signature morphism which is a map from the symbols of A to the symbols of B. 
A theory morphism is signature morphism in which the axioms of A translate to theorems of 
B. Suppose that during a design process we have somehow managed to construct a partial 
signature morphism - only some of the symbols of A have a translation as symbols of B. The 
question is how to derive a translation of the remaining symbols of A. The unskolemization 
technique uses the axioms of A and deductive inference to solve for appropriate translations 
of these symbols. As a simple example, suppose that function symbol / is untranslated and 
that it is the only untranslated symbol in an axiom V(x)G[f(x)] of A. We unskolemize / 
by replacing its occurrence(s) with a fresh existentially quantified variable: V(x)3(z)G[z]. 
This unskolemized axiom can now be translated and we can attempt to prove it in theory 
B. A proof yields a witness for the existential that is a term that depends on x. This term 
can serve as the translation of / knowing that such a translation preserves the theoremhood 
of the considered axiom. We may need to verify other axioms involving / to assure the 
appropriateness of the derived translation. 

This technique underlies the problem reduction family of algorithms and tactics in KIDS. 
For example, in constructing a divide-and-conquer algorithm we need to find translations 
of decompose, solve, and compose operators. The tactic works by letting the user select 
a standard decomposition operator from a library (or dually, selecting a standard compose 
operator) and then using unskolemization on a "soundness axiom" that relates decompose 
and compose. The unskolemized soundness axiom can then be proved in the given problem 
theory to yield a specification of the compose (resp. decompose) operator. To be more 
specific, if we are deriving a divide-and-conquer algorithm for the sorting problem, then we 
want to construct a theory morphism from divide-and-conquer theory into sorting theory. 
We might choose a standard decompose operator for input sequences, say split-a-sequence- 
in-half, and the unskolemization technique leads to a derivation of a specification for the 
usual merge operation as the translation of compose. The result is a mergesort algorithm. 
Other choices leads to quicksort, selection sorts, and insertion sorts [30]. 

Sometimes the axioms of a theory are too complex to allow direct application of unskolem- 
ization. This situation arises in the theory of global and local search algorithms. We have 
discovered and developed recently the concept of connection between theories which underlies 
and generalizes our correct but somewhat ad-hoc solution to this problem in the global and 
local search design tactics. The general result regarding connections between theories is this: 
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Suppose that there is a theory T from which we want to construct a theory morphism into 
a given application domain theory B. If there is a (preexisting) theory morphism from T to 
a library theory A and we can construct a connection from A to B, then we immediately 
have a theory morphism from T to B. So connections between theories are a way to adapt 
a library T-theory to a new, but related problem. 

The concept of connection between theories relies on several ideas. The sorts of a theory 
are all interpreted as posets (including booleans) and furthermore the set of sorts itself is a 
poset (under the subsort partial order). A collection of "polarity rules" are used to express 
(anti-)monotonicity properties of the functions and predicates of a theory. For example, 
size({x | ->P}) is monotonic in {x \ -^P} but antimonotonic in P; so if Q =$>■ P then 
size({x | -'P}) < size({x | -<Q}). These polarity rules are used to analyze the axioms of a 
theory and then to set up various connection conditions between the corresponding operators 
of theories A and B - these conditions directly generalize the conditions of a homomorphism. 
Furthermore the polarity analysis is used to direct conversion maps between corresponding 
sorts of A and B. Given these conditions and conversion maps it can in general be shown 
that the axioms of A imply the corresponding axioms of B, thus establishing the theory 
morphism. 

We have prototyped this classification approach and have tested it on some simple problems. 
Steve Westfold built a graphical interface to the refinement hierarchy that allows graphical 
navigation of it and incremental application. Jim McDonald developed a simple Theory 
Interpretation Construction Interface that supports the development of views (theory inter- 
pretations or morphisms). It shows source and target theory presentations and the current 
(possibly partial) view between them. Users have several tools to support the completion 
of a view, including typing in translations for various source theory symbols and using "un- 
skolemization" (one of the four basic methods mentioned above). We demonstrated the 
use of this system to develop a view from divide-and-conquer theory into a simple problem 
theory. A more complete implementation of these techniques is underway in the Specware 
system at Kestrel [49]. 

6.     Concluding Remarks 

Our work continues to proceed with synergistic interactions between theory and applications. 
We conclude with one final comment on the scheduling work with respect to the ongoing 
debate about the concept of reuse in software engineering. Our first conception how to 
develop schedulers was based on reuse of a general-purpose object base manager and the 
compilation of declarative constraints into object base demons. We also used a Simplex 
code to check feasibility of start-times in a generated schedule. The results were somewhat 
disappointing in that for the CDART problem we obtained from CMU, our first code couldn't 
solve it running overnight, and our second code could only solve most of it using several 
minutes time. The derived scheduler described in this paper finds a complete feasible solution 
to the same problem in less than one second. 
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Since speed is of the essence during the scheduling process and the object base and Simplex 
algorithm are problem-independent, it seemed wise to exploit our transformational tech- 
niques to try to derive codes that are problem-specific and highly efficient. Rather than 
compile constraints onto an active database, we decided to derive pruning mechanisms and 
constraint propagation code operating on problem-specific data structures. Rather than use 
a Simplex algorithm for finding feasible start-times, the constraint propagation code main- 
tains feasible start-times throughout the scheduling process. The advantage of our approach 
is the ability to expose problem structure and exploit it by transformationally deriving ef- 
ficient problem-specific code. In this case, the reuse of design knowledge (global search, 
constraint propagation) as opposed to code components (Simplex, active objectbase) made 
an enormous difference in performance. We believe that design knowledge, as captured in 
KIDS and related systems, will be much more reusable than code-level components. 
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